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Radioisotope Power Systems (RPS)

» Heat produced from natural alpha (a)

particle decay of Plutonium (Pu-238)
o 87.7-year half-life

« Small portion of heat energy (6%-25%)
converted to electricity via passive or

dynamic processes
» Thermoelectric (existing & under development)
 Stirling (under development)
* Brayton, TPV, etc. (future candidates)

» Waste heat rejected through radiators —
portion can be used for thermal control of
spacecraft subsystems

Thermoelectric
Converter

Heat Source Assembly
(GPHS Modules)

Electrical
Power

Waste P w.tﬁ:ﬁtﬂtﬁ:ﬂfﬂ:ﬁm!m‘wi E——
Heat TR, e 5 o

Low Temp .
Radiator Assembly

Source
Pu-238 [RalGE

Thermal ->

Source
Temp

GPHS-Radioisotope Thermoelectric Generator (RTG)



Suitability of RPS

Radioisotope generators will continue to serve acritical role in
the scientific exploration of the solar system and deep space

* Low to moderate power levels (=1-10 kW) for more than several months

» Operations independent of distance and orientation with respect to Sun

Best candidates for maximizing
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U.S. Radioisotope Missions

Used safely in >25 missions since 1961

» 7 Planetary (Pioneer, Voyager, Galileo, Ulysses, Cassini)

e 10 Earth orbit (Transit, Nimbus, LES)

* 6 lunar surface (Apollo ALSEP)

Ulysses « 2 Mars surface (Viking 1 & 2)

{EU} e 3 RHUs on Mars Pathfinder
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Recent and Planned RPS Units
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* 158 We (BOM)
* 6.6 % eff; 4.2 Welkg
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Multi-Mission RTG (MMRTG)

» State-of-practice, multi-functional RTG M ¥t e i)
designed for potential use on Mars 2009 Outgassing Plug Bellows
(MSL) and subsequent RPS-powered GPHS Canistor |
missions -
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e Status: IN (PbTe)

— Awarded and initiated development contract in mid-
2003 to team of Boeing-Rocketdyne and Teledyne
Energy Systems

— Completed Incremental PDR of unicouple design.
Engineering Unit (EU) PDR in January 2004. Fe Cup
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« High-efficiency RPS for alternate/backup on
Mars 2009 (MSL) and potential use on
subsequent RPS-powered missions

* Objectives/Requirements:

— Minimize program risk associated with limited Pu-
238 availability (uses x4 less Pu-238 than MMRTG)

— >110 Watts-electric at beginning of mission (BOM)
— =14 year lifetime

— Operation in space and on surface of atmosphere-
bearing planets and moons

e Status:

— Awarded and initiated development contract in mid-
2002 to Lockheed-Martin — teamed with Stirling
Technologies and NASA GRC

— EU PDR in December 2003.

— Tests of Stirling convertors at GRC have
accumulated =2300 hours of operation.
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Proposal Assumptions & Groundrules

* For these Phase A proposals, use information in “RPS Description”
document (New Frontiers Program Library) for aspects associated

with RPS accommodation and operation
« MMRTG and SRG performance and design requirements
» Projected availability and acquisition schedules
» Cost (including launch approval and other activities associated with
accommodation of RPS)

e During Phase A, NASA point of contact (POC) will work with
awardees to refine RPS accommodation concepts

« From Phase B and on, major RPS elements will be funded by the
mission and provided as GFE/GFS (government furnished

equipment and services)
* RPS hardware
 NEPA compliance/EIS development
* Nuclear safety launch approval engineering management

« Some smaller items may be assigned as responsibility of contract

team
* Risk communication



Design and Performance

Power Source MMRTG SRG
Power (We) ¥ >110 BOM ¥>110 BOM
¥ 123We @ BOM (nom) | ¥ 112 We @ BOM (nom)
¥ ~100 @ 14 yrs ¥ ~94 @ 14yrs
Mass (kg) 40 34
Envel ope (length x fin-fin width) 65.0 cm x 63.0 cm 88.9cm x 26.7 cm
Fuel Load 8 GPHS modules 2 GPHS modules
(~4 kg Pu-238) (~1 kg Pu-238)
Voltage (Vdc) 28 +/- 0.2
Operational Environments Space & Atmosphere
Design Lifetime (yrs) 314
Design Vibration Load (g°/Hz) 0.2 (example for new ELV)
Design Ac celeration Load (Q) 40 (examplefor new ELV)
EMI/EMC (nT @ 1 meter) 25 (mission-specific)
Sterilization (Mars only) NASA 4A or 4B
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MMRTG

Availability

#MMRTG units used on spacecr aft

Date of delivery to KSC

1 unit

July 2009

2 units July 2009
SRG
# SRG unitsused on spacecr aft Date of delivery to KSC
1 unit September 2008
2 units December 2008
3 units March 2009
4 units July 2009
5 units July 2009

» All scenarios include provisioning of spare unit at launch site



Costs ($M)

Principal RPS Cost Elements

w FYo4 | FYO5 |FYO06 |FYO7 |FY08 | FY09 | TOT
Activity/Element
NEPA Compliance/EIS 04 1.0 0.6 2.0
Nuclear Launch Safety Approval* 0.2 0.8 1.5 2.5 2.0 1.0 8.0
Emergency Preparedness 0.1 0.1 0.1 0.1 1.6 2.0
Spacecraft Accommodations, 0.2 0.2 0.5 1.1 4.0 4.0 10.0
Processing & Integration*
Risk Communication 0.1 0.2 0.2 0.2 0.5 0.8 2.0
Deivered Hardware Costs (for N 0.1¥T | 0.2¢4T 0.3¥T | 0.3¥T | 0.1 T
flight units)**

» All costs (except Delivered Hardware) are independent of number of RPS units.

* Does not include NASA KSC costs (e.g., launch vehicle data book, RPS accommodations).
See ELV Launch Services Information Summary in NFPL for appropriate cost assumptions.

** Expressed as fraction of total Delivered Hardware Costs (T). T = C, +...+ C, where C, = cost
of uniti and N = number of units.

Hardware Cost for Each Flight Unit (C)

w 1st 2nd 3rd 4th Nth
Unit Type

MMRTG 20 20 20 20 20
SRG S S S 15 15




